Determine the area under the standard normal curve that lies
Solution
a)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < -0.32) = (-0.32-0)/1
 = -0.32/1 = -0.32
 = P ( Z <-0.32) From Standard Normal Table
 = 0.37448
 P(X < 0.32) = (0.32-0)/1
 = 0.32/1 = 0.32
 = P ( Z <0.32) From Standard Normal Table
 = 0.62552
 P(-0.32 < X < 0.32) = 0.62552-0.37448 = 0.251                  
b)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < -1.02) = (-1.02-0)/1
 = -1.02/1 = -1.02
 = P ( Z <-1.02) From Standard Normal Table
 = 0.15386
 P(X < 0) = (0-0)/1
 = 0/1 = 0
 = P ( Z <0) From Standard Normal Table
 = 0.5
 P(-1.02 < X < 0) = 0.5-0.15386 = 0.3461                  
c)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < -1.82) = (-1.82-0)/1
 = -1.82/1 = -1.82
 = P ( Z <-1.82) From Standard Normal Table
 = 0.03438
 P(X < -0.27) = (-0.27-0)/1
 = -0.27/1 = -0.27
 = P ( Z <-0.27) From Standard Normal Table
 = 0.39358
 P(-1.82 < X < -0.27) = 0.39358-0.03438 = 0.3592                  

