About78of all female heart transplant patients will survive
About78%of all female heart transplant patients will survive for at least 3 years. Ninety female heart transplant patients are randomly selected. What is the probability that the sample proportion surviving for at least 3 years will be less than 70%?
Assume the sampling distribution of sample proportions is a normal distribution. The mean of the sample proportion is equal to the population proportion and the standard deviation is equal to StartRoot StartFraction pq Over n EndFraction EndRootpqn. The probability that the sample proportion surviving for at least 3 years will be less than 70% is?
(Round to four decimal places as needed.)
Solution
Here, the standard error of the population proportion is
sp = sqrt (p (1 - p) / n ) = sqrt(0.78*(1-0.78)/90) = 0.043665394
We first get the z score for the critical value. As
z = (p - po) / sp, then as          
           
 po = critical value =    0.7      
 p = mean =    0.78      
           
 sp = standard deviation =    0.043665394      
           
 Thus,          
           
 z = (p- po) / sp =    -1.832114466      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z >   -1.832114466   ) =    0.033467184 [ANSWER]
           

