Verify that the function uxyalnx2y2b satisfies Laplaces equa
Verify that the function u(x,y)=aln(x^2+y^2)+b satisfies Laplace\'s equation and determine a and b so that u satisfies the boundary conditions u=110 on the circle x^2+y^2=1 and u=0 on the circle x^2+y^2=80.
Solution
u(x,y) = aln(x2+y2)+b
ux = 2ax/(x2+y2) uxx = {2a(x2+y2)-2ax(2x)}/(x2+y2)2
uy = 2ay/(x2+y2) ; uyy ={2a(x2+y2)-2ay(2y)}/(x2+y2)2
uxx + uyy = 4a/(x2+y2) - 4ax2/(x2+y2)-4ay2/(x2+y2)
= 4a/(x2+y2) - 4a/(x2+y2)=0
Thus u satisfies Laplace equation.
-----------------------------------------------------
Boundary conditions are u =110, when (x2+y2)=1
i.e. 110 = aln1 +b
b =110
--------------------------------------
u =0 on circle (x2+y2)=80
0 = a ln 80+110
a ln 80 = -110
a = -110/ln 80
