Verify that the function uxyalnx2y2b satisfies Laplaces equa

Verify that the function u(x,y)=aln(x^2+y^2)+b satisfies Laplace\'s equation and determine a and b so that u satisfies the boundary conditions u=110 on the circle x^2+y^2=1 and u=0 on the circle x^2+y^2=80.

Solution

u(x,y) = aln(x2+y2)+b

ux = 2ax/(x2+y2)    uxx = {2a(x2+y2)-2ax(2x)}/(x2+y2)2

uy = 2ay/(x2+y2) ;    uyy ={2a(x2+y2)-2ay(2y)}/(x2+y2)2

uxx + uyy = 4a/(x2+y2) - 4ax2/(x2+y2)-4ay2/(x2+y2)

= 4a/(x2+y2) - 4a/(x2+y2)=0

Thus u satisfies Laplace equation.

-----------------------------------------------------

Boundary conditions are u =110, when (x2+y2)=1

i.e. 110 = aln1 +b

b =110

--------------------------------------

u =0 on circle (x2+y2)=80

0 = a ln 80+110

a ln 80 = -110

a = -110/ln 80

 Verify that the function u(x,y)=aln(x^2+y^2)+b satisfies Laplace\'s equation and determine a and b so that u satisfies the boundary conditions u=110 on the cir

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site