fxx28x7 gxx7 fgx fgx fgx fgx Given the following functions f
f(x)=x2+8x+7
g(x)=x+7
(f+g)(x)=
(fg)(x)=
(fg)(x)=
(fg)(x)=
Given the following functions, find (fg)(5):
f(x)=2x3
g(x)=x+1
Solution
f(x)=x^2+8x+7
g(x)=x+7
(f+g)(x)= f(x) + g(x)
= x^2 +8x+7 +x+7
=x^2 +9x +14
(f -g) (x) = f(x) - g(x)
=(x^2 +8x +7) - (x+7)
= x^2 +7x
(f. g) (x) = f(x) .g(x)
= (x^2 +8x+7).(x+7)
= (x^3 +7x^2 +8x^2 +56x+7x+49 )
=(x^3 +15x^2 +63x +49)
(fg) (x) = (f.g) (x)
so same answer as above one
given the following functions, find (fg)(5):
f(x)=2x3
g(x)=x+1
(fg) (-5) = f(-5).g(-5)
f(-5) = -2(-5) -3 = 10 - 3 =7
g(-5) = -5 +1 =-4
(fg) (-5) = f(-5).g(-5)
= 7 x -4
= -28

