Find the particular solution of the differential equation dy
Find the particular solution of the differential equation dy/dx=(x-4)e^(-2y) satisfying the initial condition y(4)=ln(4). The answer should be a function of \"x\". 
Solution
dy/dx=(x-4)e^(-2y)
 dye^(2y)=(x-4)dx
 e^2y /2= (x^2 /2 -4x)+c
 e^2y=x^2-8x+c
 y(4)=ln(4)
 e^2ln4=4^2-32+c
 ==>16=16-32+c
 ==>c=32
 ==>e^2y=x^2-8x+32
 or y=ln(x^2-8x+32)

