Use the fundamental identities to simplify the expression 16
Use the fundamental identities to simplify the expression. 16) 16) cos x (csc x - sec x) - cot x A) cos2x - tan2x B) 0 C) -1 D) 1 coSe 17) sin2 x Cos x sec x A) sec2 x B) cot2 x C) cscx D) csc2 x Use a sum or difference identity to find the exact value 18) sin \"11 18) sin-12 D-4 C) A) B) 2
Solution
16) cosx(cscx -secx) - cotx
= cosx/sinx - cosx*secx -cotx
=cotx -cosx/cosx -cotx
= -cotx
Option C
17) cos^2x/sin^2x + cosxsecx
= cot^2x +cosx/cosx
= cot^2x +1
= csc^2x
Option D
18) sin(11pi/12)
= sin(pi -pi/12) = sinpi/12 { sin(180 -x) =sinx }
= sinpi/12
=sin(pi/3 -pi/4)
Use formula : sin(A-B) = sinAcosB -cosAsinA
sin(pi/3 -pi/4) = sinpi/3cospi/4 -cospi/3sinpi/4
= sqrt(3)/2(1/sqrt2) - (1/2)(1/sqrt2)
= { sqrt(3) - 1}/2sqrt(2)
raionalise denominator:
= sqrt2{ sqrt(3) - 1}/4
= {sqrt(6) - sqrt(2)}/4
Option B
