How to determine the antiderivative of the function xarcsin
How to determine the antiderivative of the function x*arcsin x/square root(1-x^2)?
Solution
To determine the antiderivative of a given function, we\'ll have to calculate the indefinite integral of that function.
We\'ll apply integration by parts. First, we\'ll recall the formula:
Int udv = u*v - Int vdu
Let u = arcsin x => du = dx/sqrt(1-x^2)
Let dv = xdx/sqrt(1-x^2) => v = -sqrt(1 - x^2)
Int x*arcsin x dx/sqrt(1-x^2) = -(arcsin x)*sqrt(1 - x^2) + Intsqrt(1 - x^2)dx/sqrt(1-x^2)
Int x*arcsin x dx/sqrt(1-x^2) = -(arcsin x)*sqrt(1 - x^2) + Int dx
Int x*arcsin x dx/sqrt(1-x^2) = -(arcsin x)*sqrt(1 - x^2) + x + C
The antiderivative of the given function f(x) is: F(x) = -(arcsin x)*sqrt(1 - x^2) + x + C.
