1 3 9 7 x 7 6 4 6 3 3 8 1 x Solutionlet X x1 x2 x3 x4 1
Solution
let X = x1 x2
x3 x4
[1 -2] * [ x1 x2] +[7 6] = [-3 -3] [x1 x2]
-9 7 x3 x4 4 -6 8 1 x3 x4 // matrix multiplication
[x1 - 2x3 x2 - 2x4 ] + [7 6] = [-3x1 - 3x3 -3x2 - 3x4]
-9x1 + 7x3 -9x2 + 7x4 4 -6 8x1 + x3 8x2 + x4
[x1 -2x3 +7 x2 -2x4 + 6] = [ -3x1 -3x3 -3x2 - 3x4]
-9x1+7x3 +4 -9x2 +7x4 -6 8x1 + x3 8x2 + x4
x1 -2x3 +7 = -3x1 -3x3 => x1 + 3x1 = -3x3 +2x3 -7 => 4x1 = -x3 -7 (1)
x2 -2x4 + 6 = -3x2 -3x4 => 4x2 = -x4 -6 (2)
-9x1 +7x3 +4 = 8x1 +x3 => 17x1 = 6x3 + 4 (3)
-9x2 +7x4 -6 = 8x2 +x4 => 17x2 = 6x4 - 6 (4)
from (1) and (3)
17x1 = 6x3 + 4 (3) subtituting the value of x3 from (1)
17x1 = 6(-4x1 -7) + 4
17x1 = -24x1 -42 +4
41x1 = -38
x1 = -38/41
therefore from (1)
x3 = -4x1 - 7
x3 = -4*(-38/41) -7
x3 = 152/41 - 7
x3 = -135/41
from (2)and (4)
17x2 = 6x4 - 6 (4) // subtituting the value of x4 from (2) x4 = -4x2 - 6
17x2 = 6(-4x2 -6 ) -6
17x2 = -24x2 -36 -6
41x2 = -42
x2 = -42/41
from (2)
x4 = -4(-42/41) - 6
x4 = 168/41 -6
x4 = -78/41
therefore X = -38/41 -42/41
-135/41 -78/41
![[1 -3 -9 7] x + [7 6 4 -6] = [-3 -3 8 1] x = [ ]Solutionlet X = x1 x2 x3 x4 [1 -2] * [ x1 x2] +[7 6] = [-3 -3] [x1 x2] -9 7 x3 x4 4 -6 8 1 x3 x4 // matrix mult [1 -3 -9 7] x + [7 6 4 -6] = [-3 -3 8 1] x = [ ]Solutionlet X = x1 x2 x3 x4 [1 -2] * [ x1 x2] +[7 6] = [-3 -3] [x1 x2] -9 7 x3 x4 4 -6 8 1 x3 x4 // matrix mult](/WebImages/17/1-3-9-7-x-7-6-4-6-3-3-8-1-x-solutionlet-x-x1-x2-x3-x4-1-1033989-1761536236-0.webp)
![[1 -3 -9 7] x + [7 6 4 -6] = [-3 -3 8 1] x = [ ]Solutionlet X = x1 x2 x3 x4 [1 -2] * [ x1 x2] +[7 6] = [-3 -3] [x1 x2] -9 7 x3 x4 4 -6 8 1 x3 x4 // matrix mult [1 -3 -9 7] x + [7 6 4 -6] = [-3 -3 8 1] x = [ ]Solutionlet X = x1 x2 x3 x4 [1 -2] * [ x1 x2] +[7 6] = [-3 -3] [x1 x2] -9 7 x3 x4 4 -6 8 1 x3 x4 // matrix mult](/WebImages/17/1-3-9-7-x-7-6-4-6-3-3-8-1-x-solutionlet-x-x1-x2-x3-x4-1-1033989-1761536236-1.webp)