Let X and Y be rv wiyh correlation rho Show that Var y x
Solution
We have var(y)=E([y-E(y)]2).
Therefore,
var(y|x)=E([y-E(y)]2|x)
=E([y2-2yE(y)+E(y)2]|x)
=E(y2|x)-2E(y|x)E(y|x)+E(y|x)2
=E(y2|x)-E(y|x)2
Since var(y|x) is a random variable, we can talk about its expected value.
E(var(y|x))=E(E(y2|x)-E(y|x)2)
=E(E(y2|x))-E(E(y|x)2)
The expected value of the conditional expectation of a random variable is the expected value of the original random variable, so applying this to Y2 gives
E(var(y|x))=E(y2)-E(E(y|x)2) ....(1)
Consider the variation of the condtional expected value (using the defination of variance).
var(E(y|x))=E(E(y|x))2-E(E(y|x)2)
=E(E(y|x)2)-E(y)2 ......(2)
Adding (1) and (2),
E(var(y|x))+var(E(y|x))=E(y2)-E(y)2=var(y)
=>E(var(y|x))=var(y)-var(E(y|x)) ......(3)
For a pair (X, Y) of random variables which follows a bivariate normal distribution, the conditional mean E(Y|X) is a linear function of X given by,
E(y|x)=E(y)+p*sqrt(var(y)/var(x))*(x-E(x))
Taking the variance oon both sides and using the rule of multiplication and addition,
var(E(y|x))=var(E(y))+p*sqrt(var(y)/var(x))*(var(x)-var(E(x))
=0+p*sqrt(var(y)/var(x))*(var(x)-0)
=p*sqrt(var(y)*var(x))
Therefore, from eq(3)
E(var(y|x))=var(y)-p*sqrt(var(y)*var(x))
=> var(y)-E(var(y|x))=p*sqrt(var(y)*var(x))
Now, p2<p or p2*var(y)<p*var(y) or p2*var(y)<p*sqrt(var(y)*var(x))
Therefore, var(y)-E(var(y|x))>p2*var(y)
=>E(var(y|x))<var(y)-p2*var(y)
=>E(var(y|x))<(1-p2)*var(y)
![Let X and Y be r.v wiyh correlation rho . Show that Var [ y / x ] SolutionWe have var(y)=E([y-E(y)]2). Therefore, var(y|x)=E([y-E(y)]2|x) =E([y2-2yE(y)+E(y)2]| Let X and Y be r.v wiyh correlation rho . Show that Var [ y / x ] SolutionWe have var(y)=E([y-E(y)]2). Therefore, var(y|x)=E([y-E(y)]2|x) =E([y2-2yE(y)+E(y)2]|](/WebImages/18/let-x-and-y-be-rv-wiyh-correlation-rho-show-that-var-y-x-1036827-1761538092-0.webp)
![Let X and Y be r.v wiyh correlation rho . Show that Var [ y / x ] SolutionWe have var(y)=E([y-E(y)]2). Therefore, var(y|x)=E([y-E(y)]2|x) =E([y2-2yE(y)+E(y)2]| Let X and Y be r.v wiyh correlation rho . Show that Var [ y / x ] SolutionWe have var(y)=E([y-E(y)]2). Therefore, var(y|x)=E([y-E(y)]2|x) =E([y2-2yE(y)+E(y)2]|](/WebImages/18/let-x-and-y-be-rv-wiyh-correlation-rho-show-that-var-y-x-1036827-1761538092-1.webp)