Consider the sequence a1 2 a2 5 a3 9 a414 etc a Find a re
Consider the sequence a1 = 2, a2 = 5, a3 = 9, a4=14, etc.
(a) Find a reoccurance relation that expresses an in terms of an-1 for every integer n >= 2.
(b) Conjecture an explicit formula for an, and then prove that your conjecture is correct.
Solution
1 = a2 - a1 = 5 - 2 = 3
d2 = a3 - a2 = 9 - 5 = 4
d3 = a4 - a3 = 14 - 9 = 5
and
d2 - d1 = d3 - d2 = 1
with constant differences after 2 subtractions, you know the polynomial function is quadratic, so
a(1)² + b(1) + c = 2 ........... a + b + c = 2
a(2)² + b(2) + c = 5 ........... 4a + 2b + c = 5
a(3)² + b(3) + c = 9 ........... 9a + 3b + c = 9
5a + b = 4
3a + b = 3
2a = 1, a = ½
3(½) + b = 3
b = 1½
c = 0
so a_n = (n² + 3n) / 2
