HW 35 Normal distribution If X is normally distributed with

HW 3.5 (Normal distribution) If X is normally distributed with a mean of 6 and a standard deviation of 2.

Determine the value for x that solves each of the following:

• P(X > x) = 0.5

• P(X > x) = 0.95

• P(x < X < 9) = 0.2

• P(2 < X < x) = 0.95

• P(x < X 6 < x) = 0.99

Solution

a)

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.5      
          
Then, using table or technology,          
          
z =    0      
          
As x = u + z * s,          
          
where          
          
u = mean =    6      
z = the critical z score =    0      
s = standard deviation =    2      
          
Then          
          
x = critical value =    6   [ANSWER]

******************

b)

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.05      
          
Then, using table or technology,          
          
z =    -1.644853627      
          
As x = u + z * s,          
          
where          
          
u = mean =    6      
z = the critical z score =    -1.644853627      
s = standard deviation =    2      
          
Then          
          
x = critical value =    2.710292746   [ANSWER]

**********************

c)

For the left tailed area of x= 9:

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    9      
u = mean =    6      
          
s = standard deviation =    2      
          
Thus,          
          
z = (x - u) / s =    1.5      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   1.5   ) =    0.933192799
  
  
Thus, the left tailed area of x must be 0.933192799 - 0.2 = 0.733192799.

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.733192799      
          
Then, using table or technology,          
          
z =    0.622498086      
          
As x = u + z * s,          
          
where          
          
u = mean =    6      
z = the critical z score =    0.622498086      
s = standard deviation =    2      
          
Then          
          
x = critical value =    7.244996172   [ANSWER]

***********************************

d)

For the left tailed area of x = 2:

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    2      
u = mean =    6      
          
s = standard deviation =    2      
          
Thus,          
          
z = (x - u) / s =    -2      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -2   ) =    0.022750132

Thus, the left tailed area of x must be 0.95 + 0.022750132 = 0.972750132.

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.972750132      
          
Then, using table or technology,          
          
z =    1.922843271      
          
As x = u + z * s,          
          
where          
          
u = mean =    6      
z = the critical z score =    1.922843271      
s = standard deviation =    2      
          
Then          
          
x = critical value =    9.845686541   [ANSWER]

***************************
e)

The mean of X - 6 is u = 0, with the same standard deviation, sigma = 2.

Thus,

The left tailed area of -x is 0.01/2 = 0.005.

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.005      
          
Then, using table or technology,          
          
z =    -2.575829304      
          
As -x = u + z * s,          
          
where          
          
u = mean =    0      
z = the critical z score =    -2.575829304      
s = standard deviation =    2      
          
Then          
          
-x = critical value =    -5.151658607      
  

Thus,

x = 5.151658607 [ANSWER]

HW 3.5 (Normal distribution) If X is normally distributed with a mean of 6 and a standard deviation of 2. Determine the value for x that solves each of the foll
HW 3.5 (Normal distribution) If X is normally distributed with a mean of 6 and a standard deviation of 2. Determine the value for x that solves each of the foll
HW 3.5 (Normal distribution) If X is normally distributed with a mean of 6 and a standard deviation of 2. Determine the value for x that solves each of the foll

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site