For the given position vectors rt compute the unit tangent v

For the given position vectors r(t) compute the unit tangent vector T(t) for the given value of t. If r(t) = (cos 4t, sin 4t) then T(pi/4)= if r(t) = (t2, t3) then T(1)= if r(t) = e4ti + e-tj + tk. then T(-1)=

Solution

r\' = 4e4t i + -1e-t j + 1k

Ir\'I = (16e8t + e-2 + 1)

T(t) = 4e4t/(16e8t + e-2 + 1)i + -1e-t/(16e8t + e-2 + 1) + 1/(16e8t + e-2 + 1)k

T(1) = 4e-4/(16e-8 + e2 + 1) i + -1e1/(16e-8 + e2 + 1)j + 1/(16e-8 + e2 + 1) k

 For the given position vectors r(t) compute the unit tangent vector T(t) for the given value of t. If r(t) = (cos 4t, sin 4t) then T(pi/4)= if r(t) = (t2, t3)

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site