trigonomic form of 72 sqrt3 iSolution72 sqrt 3 i distrib

trigonomic form of 7/2 (sqrt3 - i)

Solution

7/2 ( sqrt 3 - i )

distributing 7/2

7/2 sqrt 3 - 7/2 i

z = x + iy

comparing the expression we get

x = 7/2 sqrt 3

y = -7/2

magnitude = sqrt ( x^2 + y^2 ) = sqrt ( 49/4 *3 + 49/4 ) = 7

angle = tan^-1 ( y/x) = tan^-1 ( -1/sqrt3 ) = - pi/6

in trigonometric form

r (cos theta + i sin theta) = 7 ( cos pi/6 - i sin pi/6 )

trigonomic form of 7/2 (sqrt3 - i)Solution7/2 ( sqrt 3 - i ) distributing 7/2 7/2 sqrt 3 - 7/2 i z = x + iy comparing the expression we get x = 7/2 sqrt 3 y = -

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site