Determine whether the binary operation defined on Z by lett
Solution
a*b=2^{ab}
b*a=2^{ba}=2^{ab}=a*b
Hence it is commutative
a*(b*c)=a*2^{bc}=2^{a2^{bc}}
(a*b)*c=2^{ab}*c=2^{2^{ab}c}
Hence no associative

a*b=2^{ab}
b*a=2^{ba}=2^{ab}=a*b
Hence it is commutative
a*(b*c)=a*2^{bc}=2^{a2^{bc}}
(a*b)*c=2^{ab}*c=2^{2^{ab}c}
Hence no associative
