The following random sample was selected from a normal distr
The following random sample was selected from a normal distribution: 5, 8, 4, 6, 10, 3. Construct a 95% confidence interval for the population mean
Solution
Note that              
               
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    6          
 t(alpha/2) = critical t for the confidence interval =    2.570581836          
 s = sample standard deviation =    2.607680962          
 n = sample size =    6          
 df = n - 1 =    5          
 Thus,              
               
 Lower bound =    3.263406661          
 Upper bound =    8.736593339          
               
 Thus, the confidence interval is              
               
 (   3.263406661   ,   8.736593339   ) [ANSWER]

