Find the General solution using variation of parameters yyta

Find the General solution using variation of parameters.

y\'\'+y\'=tanx given that yc= C1cosx+C2sinx

Solution

Given that

y\'\' + y = tanx

The auxialary equation is ,

m2 + 1 = 0

  m2 = -1

   m = (-1)1/2

   m = ±i

The roots are imaginary

Hence,

Complementary function is ,yc = c1cosx + c2sinx

y1(x) = cosx , y2(x) = sinx

Compute the wronskian

   W(x) = det of y1 y2

y1\' y2\'

   W(x) = ( y1y2\' - y2y1\' )

= ( cosx.(cosx) - sinx.(-sinx) )

= cos2x + sin2x

= 1

  W(x) = 1

Here, g(x) = tanx

Compute u1(x) = - ( y2(x).g(x) )/W(x) dx

   = - (sinx.tanx) / 1dx

   = - [ ln[(1/cosx ) + tanx ] -sinx ]

   u1(x) =  - [ ln[(1/cosx ) + tanx ] + sinx

u2(x) = ( y1(x).g(x) )/W(x) dx

   =   ( cosx.tanx ) / 1 dx

= cosxtanx dx

= cosx.(sinx/cosx) dx

   =   sinx dx

   u2(x) = - cosx

Hence,

   Perticular solution is, yp(x) = u1(x).y1(x) + u2(x).y2(x)

   = { - [ ln[(1/cosx ) + tanx ] + sinx }.cosx + (-cosx).sinx

= - cosx.ln(secx + tanx ) +sinxcosx - sinxcosx

= -cosx.ln(secx + tanx )

General solution is ,

y(x) = yc + yp

= c1cosx + c2sinx + ( - cosx.ln(secx + tanx ) )

   y(x) =c1cosx + c2sinx - cosx.ln(secx + tanx )

Therefore,

The general solution is ,

y(x) =c1cosx + c2sinx - cosx.ln(secx + tanx )  

Find the General solution using variation of parameters. y\'\'+y\'=tanx given that yc= C1cosx+C2sinxSolutionGiven that y\'\' + y = tanx The auxialary equation i
Find the General solution using variation of parameters. y\'\'+y\'=tanx given that yc= C1cosx+C2sinxSolutionGiven that y\'\' + y = tanx The auxialary equation i

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site