2sin2 x2cos xSolution2sin2 x2cos x Using the trignometric id
2sin^2 x=2+cos x
Solution
2sin^2 x=2+cos x
Using the trignometric identity : sin^2x +cos^2x =1
we can write the given equation as: 2( 1-cos^2x) = 2+cosx
2 -2cos^^2x = 2+cosx
( 2 gets cancelled on both sides)
cosx + 2cos^2x =0
cosx( 1 +2cosx) =0
Two sets of solution exist: cosx =0 and 1+2cosx =0
Since nothing is given for the solution interval we would find all solutions in the interval : [ 0, 2pi)
cosx =0 ; x= pi/2 , 3pi/2
cosx = -1/2 ; x= pi- pi/3 , pi+pi/3 = 2pi/3 , 4pi/3
Solution set : x = pi/2, 2pi/3 , 3pi/2, 4pi/3
