yyttetSolutiony yt tet y yt tet Integrating factor e 1t
y\'-(y/t)=te^-t
Solution
y\' = y/t + t*e^(-t)
 
 y\' - y/t = t*e^(-t)
 
 Integrating factor = e^(- (1/t)dt) = e^(-lnt)=1/t
 
 Multiply both sides of the D.E by 1/t.
 
 (1/t)y\' - y/t^2 = e^(-t)
 
 d/dt[y*(1/t)] = e^(-t)
 
 y*(1/t) = e^(-t) dt
y=t*e^(-t) dt
use integration by parts again
 u = t
 dv = e^(-t) dt
 du = dt
 v = -e^(-t)
 
 = -te^(-t) +  e^(-t) dt
 = -te^(-t) - e^(-t) +c
y= -te^(-t) - e^(-t)

