Given n 12 s2 4490 and that the population is normally dis

Given n = 12, s2 = 44.90, and that the population is normally distributed, the 99% confidence interval for the population variance is

Solution

As              
              
df = n - 1 =    11          

alpha = (1 - confidence level)/2 =    0.005          
              
Then the critical values for chi^2 are              
              
chi^2(alpha/2) =    26.75684892          
chi^2(alpha/2) =    2.603221891          
              
Thus, as              
              
lower bound = (n - 1) s^2 / chi^2(alpha/2) =    18.45882531          
upper bound = (n - 1) s^2 / chi^2(1 - alpha/2) =    189.7264316          
              
Thus, the confidence interval for the variance is              
              
(   18.45882531   ,   189.7264316   ) [ANSWER]

Given n = 12, s2 = 44.90, and that the population is normally distributed, the 99% confidence interval for the population variance isSolutionAs df = n - 1 = 11

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site