IV Y is a discrete random variable with probability distribu
IV: Y is a discrete random variable with probability distribution function P(Y=y)= y
k
where y = 1,3,5,12,15.
 1. Find the value of k that makes this a legitimate probability distribution.
2. Find E(Y)
3. Find the moment-generating function of Y
4. Using the moment-generating function from (3), find V(Y)
Solution
1.
Sum of all probabilities should be 1. So,
1K+3K+5K+12K+15K = 1
K = 1/36
2.
E(Y) = (1/36)*1+(3/36)*3+(5/36)*5+(12/36)*12+(15/36)*15 = 101/9 = 11.22
3.
Moment generating function ,
M(t) = summation of ety(y/36)=et*(1/36)+e3t*(3/36)+e5t*(5/36)+e12t*(12/36)+e15t*(15/36)
4.
V(Y) = M\'\'(0)-[M\'(0)]2 = sum [ (t/36)ety(ty+2)-{(1/36)ety(ty+1)}2] put t=0
V(Y)= -5/36

