A fueleconomy study was conducted for two Japanese automobil
A fuel-economy study was conducted for two Japanese automobiles, Honda and Toyota. One vehicle of brand was selected, and the mileage performance was observed for 11 and 9 tanks of fuel in each car respectively. The data are as follows (in MPG). Assume that MPGs have normal distributions.
**For the questions below, please specify your hypotheses.
 a) In terms of the mean MPG, does Honda have significantly higher MPG than Toyota? (?=0.05)
 b) What is the p-value for the test in a?
 c) Please calculate the 99% confidence interval for the difference of mean MPGs of Honda and
 Toyota.
Solution
a)
Let
u1 = mean of Honda
 u2 = mean of Toyota
Formulating the null and alternative hypotheses,              
               
 Ho:   u1 - u2   <=   0  
 Ha:   u1 - u2   >   0  
 At level of significance =    0.05          
 As we can see, this is a    right   tailed test.      
 Calculating the means of each group,              
               
 X1 =    32.57272727          
 X2 =    31.84444444          
               
 Calculating the standard deviations of each group,              
               
 s1 =    3.271113238          
 s2 =    2.793345266          
               
 Thus, the standard error of their difference is, by using sD = sqrt(s1^2/n1 + s2^2/n2):              
               
 n1 = sample size of group 1 =    11          
 n2 = sample size of group 2 =    9          
 Thus, df = n1 + n2 - 2 =    18          
 Also, sD =    1.356362455          
               
 Thus, the t statistic will be              
               
 t = [X1 - X2 - uD]/sD =    0.53693821          
               
 where uD = hypothesized difference =    0          
               
 Now, the critical value for t is              
               
 tcrit =    +   1.734063607      
               
 As t < 1.734,   WE FAIL TO REJECT THE NULL HYPOTHESIS.   
Thus, Honda has significantly higher MPG than Toyota . [CONCLUSION]
**********************
b)      
               
 Also, using p values,              
               
 p =    0.298942703   [ANSWER]
*******************
c)      
               
 For the   0.99   confidence level, then      
               
 alpha/2 = (1 - confidence level)/2 =    0.005          
 t(alpha/2) =    2.878440473          
               
 lower bound = [X1 - X2] - t(alpha/2) * sD =    -3.175925757          
 upper bound = [X1 - X2] + t(alpha/2) * sD =    4.632491417          
               
 Thus, the confidence interval is              
               
 (   -3.175925757   ,   4.632491417   ) [ANSWER]
*****************************************************
Hi! If you use another method/formula in calculating the degrees of freedom in this t-distribution (part c), please resubmit this question together with the formula/method you use in determining the degrees of freedom. That way we can continue helping you! Thanks!


