Find the solution to the initial value problem y 4y t2 3e
     Find the solution to the initial value problem  y\" + 4y = t^2 + 3e^t, y(0) = 0, y\'(0) = 2. 
  
  Solution
First we solve the homogeneous ode
y\'\'+4y=0
y\'\'=-2^2y
y=A sin(2t)+B cos(2t)
Now we look for a particular solutoin using method of undetermined coefficients.
We guess the particular solution based on the inhomogenous part
Guess is
yp=Ct^2+Dt+E+Fe^t
Substituting gives
2C+Fe^t+4(Ct^2+Dt+E+Fe^t)=t^2+3e^t
2C+4E+5Fe^t+4Dt+4Ct^2=t^2+3e^t
Comparing coefficients gives
D=0
2C+4E=0 ie C=-2E
4C=1 ie C=1/4
E=-1/8
5F=3
F=3/5
yp=t^2/4-1/8+3e^t/5
Hence,
y=A sin(2t)+B cos(2t)+t^2/4-1/8+3e^t/5
y(0)=0=B-1/8+3 ie B=-23/8
y\'(t)=2A cos(2t)-2B sin(2t)+t/2+3e^t/5
y\'(0)=2A+3=0 ie A=-3/2
y=-3 sin(2t)/2-23 cos(2t)/8+t^2/4-1/8+3e^t/5

