For the given cost function Cx 259 squareroot x x2125000 f
Solution
given cost C(x)=250x +(x2/125000)
a)x =1800
C(1800)=2501800 +(18002/125000)
C(1800)=10632.52
cost at production level 1800 is 10632.52
b)cost C(x)=250x +(x2/125000)
average cost AC(x)=(C(x))/x
AC(x)=(250x +(x2/125000))/x
AC(x)=(250/x) +(x/125000)
x=1800
AC(1800)=(250/1800) +(1800/125000)
AC(1800)=5.907
average cost ot production level 1800 is 5.907
c)cost C(x)=250x +(x2/125000)
marginal cost C\'(x)=(250/2x) +(2x/125000)
marginal cost C\'(x)=(125/x) +(x/62500)
x =1800
marginal cost C\'(1800)=(125/1800) +(1800/62500)
marginal cost C\'(1800)=2.975
d)average cost AC(x)=(250/x) +(x/125000)
dAC\'(x) =(-125/x3/2) +(1/125000)
for minimum average cost dAC\'(x) =0
(-125/x3/2) +(1/125000)=0
(125/x3/2) =(1/125000)
x3/2=125*125000
x=62500
production level that will minimise average cost =62500
e) minimal average cost =AC(62500)
=(250/62500) +(62500/125000)
=1+0.5
=1.5
minimal average cost =1.5

