2 A hospital in a large city records the weight of every inf
Solution
population mean,u = 2.9
 standard deviation,sigma = 0.45
a.
 P(X< 1.9 ) = P(Z< ((1.9-2.9) / 0.45)
 = P(Z< -2.22 )
 = 1 - P(Z<2.22)
 = 1 - 0.9868
 = 0.0132
 = 1.32%
b.
 P(X< 3.9 ) = P(Z< ((3.9-2.9) / 0.45)
 = P(Z< 2.22 )
 = 0.9868
 98.68 percentile
c.
 P( 2.2 <X< 3.7 )
 = P( ((2.2-2.9) / 0.45) <Z< ((3.7-2.9) / 0.45) )
 = P( -1.56 <Z< 1.78 )
 = P(Z<1.78) - P(Z<-1.56)
 = P(Z<1.78) - (1 - P(Z<1.56))
 = 0.9625 - ( 1 - 0.9406)
 = 0.9625 - 0.0594
 = 0.9031
d.
 P( 3.35 <X< 4.4 )
 = P( ((3.35-2.9) / 0.45) <Z< ((4.4-2.9) / 0.45) )
 = P( 1.00 <Z< 3.33 )
 = P(Z<3.33) - P(Z<1)
 = 0.9996 - 0.8413
 = 0.1583
e.
 top 1% corresponds to z-score=2.33
 2.9 + 2.33*0.45
 = 3.95 kg
f.
 bottom 5% correspond to z-score = -1.645
 2.9 - 1.645*0.45
 = 2.16 kg
g.
 P(X< 3.3 ) = P(Z< ((3.3-2.9) / 0.45)
 = P(Z< 0.89 )
 = 0.8133
20000*0.8133
 = 16266


