For the truss shown in Figure 1 use the numbering scheme ind
Solution
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %%%% Finite element program for truss analysis %%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 clear all;
 clc;
 Nodes = [9000 10000;9000 0;0 0]; %x, y coordinates
 Elements = [1 2 200000 500;2 3 70000 2500; 3 1 200000 500]; % first node, second node, E, A
numnode = 3; %number of nodes
 numelem = 3; %number of elements
KG = zeros(2*numnode,2*numnode); % Global stiffness matrix
 F = zeros(2*numnode, 1); % Load vector
 U = zeros(2*numnode, 1); % displacement vector
 strain = zeros(numelem,1); % strain in members
 stress= zeros(numelem,1); % stress in members
 axialforce =zeros(numelem,1); % axial force in members
 act = 1:2*numnode; %Holds active DOFs
 act([4 5 6]) = [];
 F(1) = 32000;
 F(2) = 5000;
 ElemStiff = zeros(numelem,1) %Basic element stiffness
for i = 1:numelem
   
 DOFs = [2*Elements(i, 1)-1, 2*Elements(i, 1), 2*Elements(i, 2)-1, 2*Elements(i, 2)]; %Holds element’s DOFs
 X1 = Nodes(Elements(i,1), 1);
 Y1 = Nodes(Elements(i,1), 2);
 X2 = Nodes(Elements(i,2), 1);
 Y2 = Nodes(Elements(i,2), 2);
 L = sqrt((X2-X1)^2+(Y2-Y1)^2); %Holds length of element
 s = (Y2-Y1)/L;
 c=(X2-X1)/L;
 ms = (Y2-Y1)/L;
 ls=(X2-X1)/L;
 E = Elements(i,3); %Modulus of elasticiy of element
 A = Elements(i,4); %Cross sectional area of element
 ElemStiff(i) = A*E/L % Basic element stiffness for each element
 Trans1 = [c 0;s 0;0 c;0 s];
 Trans2 = (Trans1)\';
 Kelem = Trans1*[ElemStiff(i) -ElemStiff(i);-ElemStiff(i) ElemStiff(i)]*Trans2
 KG(DOFs,DOFs) = KG(DOFs,DOFs) + Kelem; % Calculates the element stiffness matrix and assembles it to the global stiffness matrix
 %K(DOFs,DOFs) = K(DOFs,DOFs) + ElemStiff(i)*[ls^2 ls*ms -ls^2 -ls*ms; ls*ms ms^2 -ls*ms -ms^2; -ls^2 -ls*ms ls^2 ls*ms; -ls*ms -ms^2 ls*ms ms^2]; % Calculates the element stiffness matrix and assembles it to the global stiffness matrix
 end
U(act) = KG(act,act)\\F(act)
for i = 1:numelem
 DOFs = [2*Elements(i, 1)-1, 2*Elements(i, 1), 2*Elements(i, 2)-1, 2*Elements(i, 2)]; %Holds element’s DOFs
 X1 = Nodes(Elements(i,1), 1);
 Y1 = Nodes(Elements(i,1), 2);
 X2 = Nodes(Elements(i,2), 1);
 Y2 = Nodes(Elements(i,2), 2);
 L = sqrt((X2-X1)^2+(Y2-Y1)^2); %Holds length of element
 s = (Y2-Y1)/L;
 c=(X2-X1)/L;
 d = [c s 0 0; 0 0 c s]*U(DOFs);
 strain(i) = (d(2) - d(1))/L
 stress(i)= Elements(i, 3)*strain(i)
 axialforce(i) = stress(i)*Elements(i,4)
 end


