5 A polling organization interviewed by phone 400 randomly s
5. A polling organization interviewed by phone 400 randomly selected adults in New York City about their opinion on random drug testing for taxi drivers and found that 38% favored such a regulation.
a. Find the standard error of the proportion.
b. Find and interpret the 95% confidence interval for the population proportion.
c. Find and interpret the 99% confidence interval for the population proportion.
Solution
a)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.38          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.024269322   [ANSWER]
************************
B)      
               
 Now, for the critical z,              
 alpha/2 =   0.025          
 Thus, z(alpha/2) =    1.959963985          
 Thus,              
               
 lower bound = p^ - z(alpha/2) * sp =   0.332433003          
 upper bound = p^ + z(alpha/2) * sp =    0.427566997          
               
 Thus, the confidence interval is              
               
 (   0.332433003   ,   0.427566997   ) [ANSWER]
************************
c)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.38          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.024269322          
               
 Now, for the critical z,              
 alpha/2 =   0.005          
 Thus, z(alpha/2) =    2.575829304          
 Thus,              
               
 lower bound = p^ - z(alpha/2) * sp =   0.317486369          
 upper bound = p^ + z(alpha/2) * sp =    0.442513631          
               
 Thus, the confidence interval is              
               
 (   0.317486369   ,   0.442513631   ) [ANSWER]

