A man sees on average 38 customers per day What is the proba
A man sees on average 3.8 customers per day. What is the probability that in one day he sees:
a) 5 customers?
b) less than 4 customers?
c) more than 5 customers?
d) at most 6?
Solution
a)
Note that the probability of x successes out of n trials is          
           
 P(x) = u^x e^(-u) / x!          
           
 where          
           
 u = the mean number of successes =    3.8      
           
 x = the number of successes =    5      
           
 Thus, the probability is          
           
 P (    5   ) =    0.147712656 [ANSWER]
****************
b)
Note that P(fewer than x) = P(at most x - 1).          
           
 Using a cumulative poisson distribution table or technology, matching          
           
 u = the mean number of successes =    3.8      
           
 x = our critical value of successes =    4      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   3   ) =    0.473484843
           
 Which is also          
           
 P(fewer than   4   ) =    0.473484843 [ANSWER]
******************
c)
Note that P(more than x) = 1 - P(at most x).          
           
 Using a cumulative poisson distribution table or technology, matching          
           
 u = the mean number of successes =    3.8      
           
 x = our critical value of successes =    5      
           
 Then the cumulative probability of P(at most x) from a table/technology is          
           
 P(at most   5   ) =    0.815556256
           
 Thus, the probability of at least   6   successes is  
           
 P(more than   5   ) =    0.184443744 [ANSWER]
*****************
d)
Using a cumulative poisson distribution table or technology, matching          
           
 u = the mean number of successes =    3.8      
           
 x = the maximum number of successes =    6      
           
 Then the cumulative probability is          
           
 P(at most   6   ) =    0.909107605 [ANSWER]


