Find the exact value algebraically tan105 SolutionWe have gi
Find the exact value algebraically. tan(-105°)
Solution
We have given tan(-1050)
tan(-1050)=-tan(1050)
=-tan(600+450)
we use tan(A+B)=[tanA+tanB]/(1-tanA*tanB) formula for A=600 and B=450
=-[(tan(600)+tan(450))/(1-tan(600)*tan(450))]
=-[(sqrt(3)+1)/(1-sqrt(3)*1)] since tan(600)=sqrt(3),tan(450)=1
=-[(1+sqrt(3))/(1-sqrt(3))]
=-[(1+sqrt(3))/(1-sqrt(3))*((1+sqrt(3))/(1+sqrt(3)))]
=-[(1+3+2*sqrt(3))/(1-3)]
=-[(4+2*sqrt(3))/(-2)]
=-[2(2+sqrt(3))/(-2)]
=2+sqrt(3)
tan(-1050)=2+sqrt(3)
![Find the exact value algebraically. tan(-105°) SolutionWe have given tan(-1050) tan(-1050)=-tan(1050) =-tan(600+450) we use tan(A+B)=[tanA+tanB]/(1-tanA*tanB) Find the exact value algebraically. tan(-105°) SolutionWe have given tan(-1050) tan(-1050)=-tan(1050) =-tan(600+450) we use tan(A+B)=[tanA+tanB]/(1-tanA*tanB)](/WebImages/32/find-the-exact-value-algebraically-tan105-solutionwe-have-gi-1094414-1761576832-0.webp)