According to the code given change the system ODE to the fol
According to the code given change the system ODE to the following to plot the trajectories.
system1:
x\' = -x-y
y\' = 2x - (2/3)y
system 2:
x\'\'+(4/t)x\'+(2/t^2)x = 0
$Sample script for plotting trajectories of a system using quiver clear all; close all; [x1,x2] meshgrid (-1: 0.1:1 1:0. 1:1) xdl zeros (size (x1)); xd2 zeros (size (x2) for i 1:20 for j 1:20 xdot sys (0, (x1 (i, j) x2 (i, j) xd1 (i, j) xdot (1) xd2 (i,j) xdot (2) end end figure (1); quiver (x1, x2,xd1,xd2) xlabel (\'x1\') ylabel (\'x2\'); title (\'Direction field trajectories of a given system grid on & Function to define the differential equations is given below: function xdot sys (t,x) xdot. C-4 x (1) -8 x (2) -2*x (2) endSolution
clear all;
close all;
[x1,x2] = meshgrid(-1:0.1:1,-1:0.1:1);
xd1 = zeros(size(x1));
xd2 = zeros(size(x2));
for i=1:20
for j=1:20
xdot = sys(0,[x1(i,j);x2(i,j) ]);
xd1(i,j) = xdot(1);
xd2(i,j) = xdot(2);
end
end
figure(1);
quiver(x1,x2,xd1,xd2);
xlabel(\'x1\');
ylabel(\'x2\');
title(\'Direction field trajectories of a given system\')
grid on
%function to define differential equations
function xdot = sys(t,x)
xdot = [-1*x(1) - 1*x(2);2*x(1)-(2/3)*x(2)]
end
