Given fx x25 x0 find its inverse if possible a f1x square ro
Given f(x)= x25, x0, find its inverse if possible.
a) f1(x)= square root 2x+5
b) f1(x)= square root x5
c) f1(x)= square root x+5
d) f1(x)= square root x+5
e) f1(x)= square root x5
Solution
f(x) = x^2 - 5
vertex is at ( 0, -5) for x<=0 ; f(x) is 1 to1 function so inverse exists
To find inverse : Plug y = x and x=y , solve for y :
y = x^2 - 5
x = y^2 - 5
x+5 = y^2
y = + / - sqrt(x+5)
for domain x<=0 ; f^-1(x) = -sqrt(x+5)
Option d)
