Use the GramSchmidt Procedure to produce an orthogonal basis
Use the Gram-Schmidt Procedure to produce an orthogonal basis for the subspace spanned by the set. {[-1 2 1 1], [7 -8 -1 -4], [5 4 7 -3]} An orthogonal basis for the subspace spanned by the given set is {}. (Use a comma to separate matrices as needed.)
Solution
Let the given vectors be denoted by v1,v2and v3.Then, as per Gram-Schmidt process, u1 = v1 = (-1,2,1,1)T, u2 = v2 –proju1(v2) = v2 –[(v2.u1)/(u1.u1)]u1= v2 –[(-7-16-1-4)/(1+4+1+1)]u1 = (7,-8,-1,-4)T + 4(-1,2,1,1)T = ( 3,0,3,0)T, and
u3= v3- proju1(v3)- proju2(v3)=v3-[(v3.u1)/(u1.u1)]u1-[(v3.u2)/(u2.u2)]u2=v3-[(-5+8+7-3)/(1+4+1+1)]u1 –[(15+0+21+0)/(9+0+9+0)]u2= (5,4,7,-3)T-(-1,2,1,1)T- 2( 3,0,3,0)T = (0,2,0,-4)T. Thus an orthogonal basis for the given subspace is { (-1,2,1,1)T, ( 3,0,3,0)T, (0,2,0,-4)T }
![Use the Gram-Schmidt Procedure to produce an orthogonal basis for the subspace spanned by the set. {[-1 2 1 1], [7 -8 -1 -4], [5 4 7 -3]} An orthogonal basis f Use the Gram-Schmidt Procedure to produce an orthogonal basis for the subspace spanned by the set. {[-1 2 1 1], [7 -8 -1 -4], [5 4 7 -3]} An orthogonal basis f](/WebImages/36/use-the-gramschmidt-procedure-to-produce-an-orthogonal-basis-1106959-1761586082-0.webp)