Find Magnitude coordinate direction angles of resultant for
Solution
>> Considering Force F1,
Component along Z Direction = 300*sin60 = 259.81 N
Component in X-Y Plane = 300*cos60 = 150 N
Component along Y direction = 150*cos45 = 106.07 N
and, Component along X Direction = - 106.07 N
=> F1 = - 106.07 i + 106.07 j + 259.81 k
>> Considering F2
Component along X-Direction = 500*cos60 = 250 N
Component along Y-Direction = 500*cos45 = 212.13 N
Component along Z-Direction = 500*cos120 = - 150 N
=> F2 = 250 i + 212.13 j - 150 k
So, Fr = Resultant Force = F1 + F2 = ( - 106.07 i + 106.07 j + 259.81 k ) + (250 i + 212.13 j - 150 k)
=> Fr = 143.93 i + 318.20 j + 109.81 k
Magnitude = [ 143.932 + 318.202 + 109.812 ]1/2 = 366.10 N ....ANSWER...
So, Coordinate Direction Angles are {cos-1(Frx/|Fr|) , cos-1(Fry/|Fr|), cos-1(Frz/|Fr|) }
= { cos-1(143.93/366.10) , cos-1(318.20/366.10), cos-1(109.81/366.10) }
= { 66.85, 29.64, 72.55 } ........ANSWER.........
