4 If f is the complex function defined by fz 1z 1 for z do
4. If f is the complex function defined by f(z) = 1/z + 1 for z does not equal 1, determine real functions u and v such that f = u + iv . Then find f(2 i).
Solution
Solution : The complex no : z= x+y+iy
z+1= x+iy+1 = (x+1) +iy
f(z) = 1/ (z+1) = [ 1 / ( ( x+1) +iy ) ] [ ( x+1-iy) / (x+1- iy) ]
= ( x+1-iy) / [ (x+1)2+y2]
u+iv = [ (x+1) /{(x+1)2+y2}] - iy / { (x+1)2+y2}
equating the real and imaginary parts we get
u = (x+1) / { (x+1)2+y2} , v = - y / { (x+1)2+y2
to find f( 2- i) = 1/ (z+1) = 1 /[ ( 2-i) +1]
= 1/ ( 3-i) = (3+i) / (32+1) = (3+i) /10 = 3/10 + i /10
