Here is a little table of Laplace transforms 1 1nE t 1a 8 C
Solution
Applying the Laplace transform in the given equation in both sides
L[y\'\' (t)]+4 L[y(t)] = 0.5 L[1]. ------(1)
L[y\'\' (t)] = s2 L[y(t),t,s] - s y(0) - y\' (0) = s2 L[y(t),t,s] - 2s + 1, because y(0) = 2 and y\' (0) = -1. ------(2)
L[y(t)]=L[y(t),t,s] ------(3)
Substituting the value of L[y\'\' (t)] and L[y(t)] from equation (2) and (3) in equation (1), we get
s2 L[y(t),t,s] - 2s + 1+ 4 L[y(t),t,s] = 0.5/s, because L[1]= 1/s. Solving for L[y(t),t,s],
(s2 +4) L[y(t),t,s] = 1/(2s) +2s -1
L[y(t),t,s] = 1/[2s(s2 +4)] +2s/(s2 +4) -1/(s2 +4) ------(4)
Applying inverse Laplace trnsformation in equation (4),
y(t) = L-1[1/{2s(s2 +4)}] +2 L-1[s/(s2 +4)] - L-1[1/(s2 +4) ]
y(t) = (1/8)L-1[1/(s)] - (1/8)L-1[s/(s2 +4)] +2 L-1[s/(s2 +4)] - L-1[1/(s2 +4) ]
y(t) = (1/8)L-1[1/(s)] + (15/8)L-1[s/(s2 +4)] - (1/2)L-1[2/(s2 +4) ]
y(t) = (1/8)+ (15/8)cos(2t) - (1/2)sin(2t)
![Here is a little table of Laplace transforms: {1, 1/n})E^* t, 1/-a + 8} {Cos[a t], E/a^2 + E^2} {Sin [a t], a/a^2 + E^2} {E*^t cos [b t], -a + E/a^2 + b^2 - 2 Here is a little table of Laplace transforms: {1, 1/n})E^* t, 1/-a + 8} {Cos[a t], E/a^2 + E^2} {Sin [a t], a/a^2 + E^2} {E*^t cos [b t], -a + E/a^2 + b^2 - 2](/WebImages/43/here-is-a-little-table-of-laplace-transforms-1-1ne-t-1a-8-c-1132860-1761605615-0.webp)