30 pts Find the equation of the graphs below Use cosine when
Solution
1)
notice here that at t = 0, the function hits the midline
So, this is a sine function
max = 5 , min = 1
So, Amplitude, A = (5 - 1)/2 = 2
Midline, D = (5 + 1)/2 = 3
Period starts at 0 and ends at 2pi
So, B = period/2pi
= 2pi/2pi
B = 1
And since it starts exactly at the midline,
there is no horizontal shift at all
C = 0
Thus
using y = Asin[B(x - C)] + D
we have
y = 2sin(x) + 3 ----> ANS
--------------------------------------------------------------------
Here it starts at min when t = 0
This is a negative cos curve
max = 275
min = -25
So, A = (max - min)/2 ---> 150
D = (max + min)/2 ---> 125
Period = 2pi itself
So, B = 1
And no C
Thus y = Acos[B(x - C)] + D
y = -150cos(x) + 125 --> ANS
---------------------------------------------------------------------
Starts at max
So, positive cos graph
Max = 30
Min = 10
A = (max - min)/2 = 10
D = (max + min)/2 ---> 20
Period = 12
So, B = 2pi/12 = pi/6
And C = 0 as no phase shift
So, y = Acos[B(x - C)] + D
y = 10cos(pi*x/6) + 20 ---> ANS

