Suppose f and g are differentiable functions with the values

Suppose f and g are differentiable functions with the values shown in the following table.

x f(x) g(x) f\'(x) g\'(x)
-1, 2, 1, -1, 3
0, 1, 1, 2, 3
1, -1, -3, 2, -4

Find the value of h\'(1), where h(x) = f(x)g(x)
Find the value of k\'(0), where k(x) = f(x)/g(x)
Find the value of m\'(-1) where m(x) = f(g(x))

Please show work

Solution

h\'(1) = f\'(x)g(x) +f(x)g\'(x) = (-1)(-4) + (2)(-3)= -6 + 4 = -2 k\'(0) = g(x) f\'(x) -f(x) g\'(x) / g(x)*g(x) : 2 - 3 / 1 = -1 m\'(-1) = f\'(g(x)) * g\'(x) = 3*[ 2 ] = 6
Suppose f and g are differentiable functions with the values shown in the following table. x f(x) g(x) f\'(x) g\'(x) -1, 2, 1, -1, 3 0, 1, 1, 2, 3 1, -1, -3, 2,

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site