Show that 12v w2 v w2 v2 w2 for any v and w in an inner

Show that 1/2(||v + w||^2 + ||v - w||^2) = ||v||^2 + ||w||^2 for any v and w in an inner product space.

Solution

Let v = (v1 , v2, …, vn ,…..) and w = ( w1 , w2 , …, wn , ….). Then v +w = ( v1 +w1 , v2 +w2 , …, vn +wn ,…) and v –w = ( v1 -w1 , v2 -w2 , …, vn -wn ,…) . Further, || v+w||2 = [( v1 +w1)2 + (v2 +w2)2 +…+(vn+wn)2 +….] = [ v12 + w12 + 2v1 w1 + v22 + w22 + 2v2 w2 + … + vn2 + wn2 + 2vnwn +…] and || v -w||2 = [( v1 -w1)2 + (v2 -w2)2 +…+(vn- wn)2 +….] =   [ v12 + w12 - 2v1 w1 + v22 + w22 - 2v2 w2 + … + vn2 + wn2 - 2vnwn +…] so that 1 /2[|| v+w||2 + || v-w||2 ] = v12 + w12 + v22 + w22 +… + vn2 +wn2 +…. = (v12 + v22 +…+vn2 +…) + (w12 + w22 + …+wn2 +…) = || v||2 + ||w||2

 Show that 1/2(||v + w||^2 + ||v - w||^2) = ||v||^2 + ||w||^2 for any v and w in an inner product space.SolutionLet v = (v1 , v2, …, vn ,…..) and w = ( w1 , w2

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site