List all integers x satisfying x 2 mod 10 x 4 mod 11 and 100
List all integers x satisfying x 2 (mod 10), x 4 (mod 11), and 100 x 100
Solution
-2(mod10) = x
4(mod11) = x
then
10p + x = -2
11q + x = 4
then
x = -2 - 10p
x = 4 - 11q
then
4 - 11q = -2 - 10p
11q - 10p = 6
q = (6 + 10p)/11
x = -2(5p + 1)
and
-100 <= x <=100
-100 <= -2(5p + 1) <= 100
50 >= (5p + 1) >= -50
49 >= 5p >= -51
49/5 >= p >= -51/5
-10 <= p <= 9
from
q = (6 + 10p)/11
we calculate that p will be integer only when,
-10 <= p <= 9
-100 <= 10p <= 90
-94 <= 6 + 10p <= 96
-94/11 <= (6 + 10p)/11 <= 96/11
for integer solution
-8 <= q <= 8
-10 <= p <= 9
q = (6 + 10p)/11
Now, from hit and trial
p = -5 then q = -4 and x = 48
and
p = 6 then q = 6 and x = -62

