You are given a joint pdf of two random variables where f xy
You are given a joint pdf of two random variables, where
f x,y) = 1/4(y + 2x) when 0<x<1 ; 0<y<2
f(x,y) = 0 otherwise
a) Prove that this is a valid joint pdf.
b) Calculate the marginal density of Y.
c) Use the marginal density of Y to find P(0<Y<1).
d) Calculate the marginal density of X.
e) Calculate the conditional density of X given Y.
Solution
a) integral 1/4(y+2x)dxdy
= integral 1/4 * ( yx + x^2)dy Putting 0<x<1
= integral 1/4 * (y+1)dy
= 1/4 ( y^2/2 + y )
=1/4 (2+2)
= 1
Hence Valid PDF
b)
fY(y) = integral 1/4(y+2x)dx
= 1/4 ( xy + x^2)
c)
1/4 ( xy + x^2) 0<Y<1
= 1/4 ( x + x^2 - x^2)
= x/4 Answer
d)
fX(x) = integral 1/4(y+2x)dy
= 1/4 ( y^2/2 + 2xy)
e)
P(X/Y) = 1/4(y + 2x) / 1/4 ( xy + x^2)
= (y+2x)/(xy +x^2)
