Consider the infinite series sigmainfinityn1 3n 3n 1 Write

Consider the infinite series sigma^infinity_n=1 (3/n - 3/n + 1). Write the first 3 partial sums, S_1, S_2, S_3. [NOTE! remember that S_1 = a_1, S_2 = a_1 + a_2, S_3 = a_1 + a_2 + a_3.] Find the limit lim_n rightarrow infinity S_n. This will be the sum of the series.

Solution

1) S1 =(3/1 -3/2) =3/2

S2=(3/1 -3/2) +(3/2 -3/3) =2

S3=(3/1 -3/2) +(3/2 -3/3)+(3/3 -3/4) =9/4

b)Sn=(3/1 -3/2) +(3/2 -3/3)+(3/3 -3/4)+..........+(3/n -3/n+1) =3-(3/n+1)

Sn=(3n/n+1)

limn->Sn

=limn->(3n/n+1)

=limn->(3/1+(1/n))

=(3/1+(0))

=3

 Consider the infinite series sigma^infinity_n=1 (3/n - 3/n + 1). Write the first 3 partial sums, S_1, S_2, S_3. [NOTE! remember that S_1 = a_1, S_2 = a_1 + a_2

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site