Consider the infinite series sigmainfinityn1 3n 3n 1 Write
Consider the infinite series sigma^infinity_n=1 (3/n - 3/n + 1). Write the first 3 partial sums, S_1, S_2, S_3. [NOTE! remember that S_1 = a_1, S_2 = a_1 + a_2, S_3 = a_1 + a_2 + a_3.] Find the limit lim_n rightarrow infinity S_n. This will be the sum of the series.
Solution
1) S1 =(3/1 -3/2) =3/2
S2=(3/1 -3/2) +(3/2 -3/3) =2
S3=(3/1 -3/2) +(3/2 -3/3)+(3/3 -3/4) =9/4
b)Sn=(3/1 -3/2) +(3/2 -3/3)+(3/3 -3/4)+..........+(3/n -3/n+1) =3-(3/n+1)
Sn=(3n/n+1)
limn->Sn
=limn->(3n/n+1)
=limn->(3/1+(1/n))
=(3/1+(0))
=3
