Consider the two mutually exclusive projects in the table be
Solution
Present worth of Project B1 is ($66,458)
Present worth of Project B2 is ($40,891)
Hence Project B2 is a better choice at MARR of 11 %
Explanation:
Project B1
Project B2
Project B1
Project B2
Year
Cash Flow (CB1)
Cash Flow (CB2)
PV Factor @ 11 % (F)
PV (= F x CB1)
PV (= F x CB2)
0
($27,000)
($14,000)
1
($27,000)
($14,000)
1
($2,900)
($2,300)
0.900900901
($2,613)
($2,072)
2
($2,900)
($2,300)
0.811622433
($2,354)
($1,867)
3
($2,900)
($2,300)
0.731191381
($2,120)
($1,682)
4
($2,900)
($2,300)
0.658730974
($1,910)
($1,515)
5
($23,900)
($13,800)
0.593451328
($14,183)
($8,190)
6
($2,900)
($2,300)
0.534640836
($1,550)
($1,230)
7
($2,900)
($2,300)
0.481658411
($1,397)
($1,108)
8
($2,900)
($2,300)
0.433926496
($1,258)
($998)
9
($2,900)
($2,300)
0.390924771
($1,134)
($899)
10
($23,900)
($13,800)
0.352184479
($8,417)
($4,860)
11
($2,900)
($2,300)
0.317283314
($920)
($730)
12
($2,900)
($2,300)
0.285840824
($829)
($657)
13
($2,900)
($2,300)
0.257514256
($747)
($592)
14
($2,900)
($2,300)
0.231994825
($673)
($534)
15
$3,100
$200
0.209004347
$648
$42
NPW
($66,458)
($40,891)
Project B1:
Cash flow for year 5 = Annual expenses + Salvage value + Initial investment
= -$ 2,900 + $ 6,000 - $ 27,000 = $ 23,900
Cash flow for year 15 = -$ 2,900 + $ 6,000 = $ 3,100
Project B2:
Cash flow for year 5 = Annual expenses + Salvage value + Initial investment
= -$ 2,300 + $ 2,500 - $ 14,000 = $ 13,800
Cash flow for year 15 = -$ 2,300 + $ 2,500 = $ 200
| Project B1 | Project B2 | Project B1 | Project B2 | ||
| Year | Cash Flow (CB1) | Cash Flow (CB2) | PV Factor @ 11 % (F) | PV (= F x CB1) | PV (= F x CB2) |
| 0 | ($27,000) | ($14,000) | 1 | ($27,000) | ($14,000) |
| 1 | ($2,900) | ($2,300) | 0.900900901 | ($2,613) | ($2,072) |
| 2 | ($2,900) | ($2,300) | 0.811622433 | ($2,354) | ($1,867) |
| 3 | ($2,900) | ($2,300) | 0.731191381 | ($2,120) | ($1,682) |
| 4 | ($2,900) | ($2,300) | 0.658730974 | ($1,910) | ($1,515) |
| 5 | ($23,900) | ($13,800) | 0.593451328 | ($14,183) | ($8,190) |
| 6 | ($2,900) | ($2,300) | 0.534640836 | ($1,550) | ($1,230) |
| 7 | ($2,900) | ($2,300) | 0.481658411 | ($1,397) | ($1,108) |
| 8 | ($2,900) | ($2,300) | 0.433926496 | ($1,258) | ($998) |
| 9 | ($2,900) | ($2,300) | 0.390924771 | ($1,134) | ($899) |
| 10 | ($23,900) | ($13,800) | 0.352184479 | ($8,417) | ($4,860) |
| 11 | ($2,900) | ($2,300) | 0.317283314 | ($920) | ($730) |
| 12 | ($2,900) | ($2,300) | 0.285840824 | ($829) | ($657) |
| 13 | ($2,900) | ($2,300) | 0.257514256 | ($747) | ($592) |
| 14 | ($2,900) | ($2,300) | 0.231994825 | ($673) | ($534) |
| 15 | $3,100 | $200 | 0.209004347 | $648 | $42 |
| NPW | ($66,458) | ($40,891) |




