3 Use the data in Housepricexls price house price 1000s lot
3. Use the data in House_price.xls: price = house price, $1000s lotsize = size of lot in square feet sqrft = size of house in square feet bdrms = number of bedrooms price = 0 + 1*lotsize + 2*sqrft + 3*bdrms
a. Apply the White test for heteroskedasticity to the above model (you can use the STATA command for this). Write down the chi-square statistic and the p-value. What do you conclude? (4 points) Now generate the natural log of several of the variables using the following commands: gen lnprice = ln(price) gen lnlotsize = ln(lotsize) gen lnsqrft = ln (sqrft) *Note: We are not taking the natural log of bdrms* Our new model will be: lnprice = 0 + 1*lnlotsize + 2*lnsqrft + 3*bdrms
b. Apply the White test for heteroskedasticity to this new model. Write down the chi-square statistic and the p-value. What do you conclude? (4 points)
4. What explanation might there be for the results that you saw in a and b above? (Hint: How would taking the natural log of variables tend to affect the White test results?) (2 points)
| price | bdrms | lotsize | sqrft |
| 300 | 4 | 6126 | 2438 |
| 370 | 3 | 9903 | 2076 |
| 191 | 3 | 5200 | 1374 |
| 195 | 3 | 4600 | 1448 |
| 373 | 4 | 6095 | 2514 |
| 466.275 | 5 | 8566 | 2754 |
| 332.5 | 3 | 9000 | 2067 |
| 315 | 3 | 6210 | 1731 |
| 206 | 3 | 6000 | 1767 |
| 240 | 3 | 2892 | 1890 |
| 285 | 4 | 6000 | 2336 |
| 300 | 5 | 7047 | 2634 |
| 405 | 3 | 12237 | 3375 |
| 212 | 3 | 6460 | 1899 |
| 265 | 3 | 6519 | 2312 |
| 227.4 | 4 | 3597 | 1760 |
| 240 | 4 | 5922 | 2000 |
| 285 | 3 | 7123 | 1774 |
| 268 | 3 | 5642 | 1376 |
| 310 | 4 | 8602 | 1835 |
| 266 | 3 | 5494 | 2048 |
| 270 | 3 | 7800 | 2124 |
| 225 | 3 | 6003 | 1768 |
| 150 | 4 | 5218 | 1732 |
| 247 | 3 | 9425 | 1440 |
| 275 | 3 | 6114 | 1932 |
| 230 | 3 | 6710 | 1932 |
| 343 | 3 | 8577 | 2106 |
| 477.5 | 7 | 8400 | 3529 |
| 350 | 4 | 9773 | 2051 |
| 230 | 4 | 4806 | 1573 |
| 335 | 4 | 15086 | 2829 |
| 251 | 3 | 5763 | 1630 |
| 235 | 4 | 6383 | 1840 |
| 361 | 4 | 9000 | 2066 |
| 190 | 4 | 3500 | 1702 |
| 360 | 4 | 10892 | 2750 |
| 575 | 5 | 15634 | 3880 |
| 209.001 | 4 | 6400 | 1854 |
| 225 | 2 | 8880 | 1421 |
| 246 | 3 | 6314 | 1662 |
| 713.5 | 5 | 28231 | 3331 |
| 248 | 4 | 7050 | 1656 |
| 230 | 3 | 5305 | 1171 |
| 375 | 5 | 6637 | 2293 |
| 265 | 3 | 7834 | 1764 |
| 313 | 3 | 1000 | 2768 |
| 417.5 | 4 | 8112 | 3733 |
| 253 | 3 | 5850 | 1536 |
| 315 | 4 | 6660 | 1638 |
| 264 | 3 | 6637 | 1972 |
| 255 | 2 | 15267 | 1478 |
| 210 | 3 | 5146 | 1408 |
| 180 | 3 | 6017 | 1812 |
| 250 | 3 | 8410 | 1722 |
| 250 | 4 | 5625 | 1780 |
| 209 | 4 | 5600 | 1674 |
| 258 | 4 | 6525 | 1850 |
| 289 | 3 | 6060 | 1925 |
| 316 | 4 | 5539 | 2343 |
| 225 | 3 | 7566 | 1567 |
| 266 | 4 | 5484 | 1664 |
| 310 | 6 | 5348 | 1386 |
| 471.25 | 5 | 15834 | 2617 |
| 335 | 4 | 8022 | 2321 |
| 495 | 4 | 11966 | 2638 |
| 279.5 | 4 | 8460 | 1915 |
| 380 | 4 | 15105 | 2589 |
| 325 | 4 | 10859 | 2709 |
| 220 | 3 | 6300 | 1587 |
| 215 | 3 | 11554 | 1694 |
| 240 | 3 | 6000 | 1536 |
| 725 | 5 | 31000 | 3662 |
| 230 | 3 | 4054 | 1736 |
| 306 | 2 | 20700 | 2205 |
| 425 | 3 | 5525 | 1502 |
| 318 | 4 | 92681 | 1696 |
| 330 | 3 | 8178 | 2186 |
| 246 | 4 | 5944 | 1928 |
| 225 | 3 | 18838 | 1294 |
| 111 | 4 | 4315 | 1535 |
| 268.125 | 3 | 5167 | 1980 |
| 244 | 4 | 7893 | 2090 |
| 295 | 3 | 6056 | 1837 |
| 236 | 3 | 5828 | 1715 |
| 202.5 | 3 | 6341 | 1574 |
| 219 | 2 | 6362 | 1185 |
| 242 | 4 | 4950 | 1774 |
Solution


