A text file contains 1000 characters When the file is sent b
A text file contains 1000 characters. When the file is sent by e-mail from one machine to another, each character (independently of all other characters) has probability 0.001 of being corrupted. Use a Poisson random variable to estimate the probability that the file is transferred without error. Compare this to the answer obtained when you model the number of errors as a binomial random variable.
Solution
a)
Use a Poisson random variable to estimate the probability that the file is transferred without error.
Note that the probability of x successes out of n trials is          
           
 P(x) = u^x e^(-u) / x!          
           
 where          
           
 u = the mean number of successes = n p = 1000*0.001 =    1      
           
 x = the number of successes =    0      
           
 Thus, the probability is          
           
 P (    0   ) =    0.367879441 [ANSWER]
 *************************
b)
USING BINOMIAL:
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    1000      
 p = the probability of a success =    0.001      
 x = the number of successes =    0      
           
 Thus, the probability is          
           
 P (    0   ) =    0.367695425 [ANSWER]
As we can see, the results of parts A and B are very close to each other. [CONCLUSION]

