Two random samples one of 15 Los Angeles area commuters and
Two random samples, one of 15 Los Angeles area commuters and another of 15 San Francisco Bay area commuters were independently chosen. The following table shows the sample average and sample standard deviation of daily commuting miles for each sample group.
Los Angeles commuters x1 = 57.4 s1 = 12.4
San Francisco commuters x2 = 52.8 s2 = 13.8
Assume that the populations of commuting miles driven by the commuters in these two cities are normal populations with equal variances 2 . Find both a 90% and a 95% confidence interval for the difference in mean commuting miles between the two populations. What conclusion do you draw?
| Los Angeles commuters | x1 = 57.4 | s1 = 12.4 | 
| San Francisco commuters | x2 = 52.8 | s2 = 13.8 | 
Solution
X (Mean)=57.4; Standard Deviation (s.d1)=12.4
 Number(n1)=15
 Y(Mean)= 52.8; Standard Deviation(s.d2)=13.8
 Number(n2)=15
 WHEN SD ARE EQUAL, AT 0.1 LOS              
               
 CI = (x1 - x2) ± t a/2 * S^2 * Sqrt ( 1 / n1 + 1 / n2 )              
 Where,               
 x1 = Mean of Sample 1, x2 = Mean of sample2              
 sd1 = SD of Sample 1, sd2 = SD of sample2              
 a = 1 - (Confidence Level/150)              
 ta/2 = t-table value              
 CI = Confidence Interval               
 Value Pooled variance S^2= (n1-1*s1^2 + n2-1*s2^2 )/(n1+n2-2)
 S^2 = (14*153.76 + 14*190.44) / (30- 2 )
 S^2 = 172.1
 S = Sqrt(172.1)   = 13.119
 t  with (n1+n2-2) i.e 28 d.f is 1.701          
 CI = [ ( 57.4- 52.8) ±t a/2 * S * Sqrt( 1/15 + 1/15)]              
 = [ ( 57.4- 52.8) ± t a/2 * 2.898 * Sqrt( 1/15 + 1/15 ) ]              
 = [ 4.6 ± (1.701 * 13.119 * Sqrt( 1/15 + 1/15 )) ]              
 = [-3.548 , 12.748]              
               
 WHEN SD ARE EQUAL, AT 0.05 LOS  
 t  with (n1+n2-2) i.e 28 d.f is 2.048
 CI = [ ( 57.4- 52.8) ±t a/2 * S * Sqrt( 1/15 + 1/15)]              
 = [ ( 57.4- 52.8) ± t a/2 * 2.898 * Sqrt( 1/15 + 1/15 ) ]              
 = [ 4.6 ± (2.048 * 13.119 * Sqrt( 1/15 + 1/15 )) ]              
 = [-5.2107 , 14.41]  

