The Taylor expansion for loge1 x is given by loge1 x x x
Solution
(i) FOR X=0.4
MY FUNCTION:-
Nmax=1000; %maximum number of terms
num_app=1; %number of values approximated
approx=zeros(2,1);
approx(1)=0.4;
%approx(2)=0.83;
solution=zeros(Nmax,2,num_app);
%
for k=1:num_app %error loop
true=log(approx(k)+1); %calculates true value
disp(true);
partial_sum=0; %resets partial sum variable
for i=1:Nmax %term loop
x=approx(k); %assigns local value
partial_sum=partial_sum+(-1)^(i-1)*x^(i)/i; %runs taylor approx
disp(partial_sum);
error=abs((true-partial_sum)/true); %calculates relative error
disp(error);
solution(i,1,k)=i;
solution(i,2,k)=error;
end
end
MATLAB FUNCTION
syms x
taylor(log(1+x), x, \'ExpansionPoint\', 0.4)
OUTPUT:
myval= >> TaylorSeries = 0.3365
Exact Value= Taylor series = 0.253
ERROR : 0.0833
(ii) X= 0.83
OUTPUT:
my val= >> TaylorSeries = 0.6043
Exact val = 0.26245
error=0.34
