The wheel of radius r 300 mm rolls to the right without sli
The wheel of radius r = 300 mm rolls to the right without slipping and has a velocity v_0 = 3m/s and an acceleration a_0 =-5m/s^2of its center 0 as shown in the figure. Calculate the velocity of point A on the wheel for the instant represented. Calculate the acceleration of point A on the wheel for the instant represented.
Solution
a)
w = VO / r = 3/0.3 = 10 rad/s
VA = VO + VA/O
VO = 3i
VA/O = w X rA/O
= 10 (-k) X 0.2(-i cos30 + j sin30)
= -10k X (-0.1732i + 0.1j)
= i + 1.732j
vA = 3i + (i + 1.732j)
vA = 4i + 1.732j
Magnitude of vA = sqrt (42 + 1.7322) = 4.36 m/s
b)
Angular acceleration, alpha = aO /r = -5 / 0.3 = -16.67 rad/s2
In vector notation, alpha = 16.67k rad/s2
aA = aO + aA/O
aO = -5i
aA/O = w X (w X r) + (alpha X r)
= (-10k) X (i + 1.732j) + (16.67k X 0.2(-i cos30 + j sin30))
= (17.32i -10j) + (16.67k X (-0.1732i + 0.1j))
= (17.32i -10j) + (-1.6667i - 2.8867j)
= 15.653i - 12.8867j
aA = -5i + (15.653i - 12.8867j)
aA = 10.653i - 12.8867j
Magnitude = sqrt (10.6532 + 12.88672) = 16.72 m/s2
